#include #define SCPI_ARGS_N_C 1 #define SCPI_ARGS_N_Q 0 #include "app/scpi/scpi_handler.h" #include "app/led/led.h" const uint8_t fsqvbl_CommandHandlerLED1 = 1; // IND:LED:LED1 const uint8_t fsqvbl_CommandHandlerLED2 = 2; // IND:LED:LED2 const uint8_t fsqvbl_CommandHandlerWRMP = 3; // IND:WRMP // ----- // @argTokens, @argTypes // Declare argument parser entities // Supported arguments: 1=CHARACTER DECLARE_SCPI_ARGS_C( eScpiArg_Character ); // Argument 1 Character Values allowed list / ACM Switch State DECLARE_ARGUMENT_CHARACTER_ALLOWED_LIST_EXPORT( IND_AllowedValues_SwitchState, "OFF", "ON", "GRN", "RED" ); #include "app/scpi/commandHandlers/led_switch.h" #include "app/nfm/nfm_base.h" // Refer to: // [1] SCPI Specification, revision 1999.0 // "Standard Commands for Programmable Instruments (SCPI), VERSION 1999.0, May 1999" // [2] Gpib Programming Tutorial, (http://g2pc1.bu.edu/~qzpeng/gpib/manual/GpibProgTut.pdf) // Electronics Group (http://www.few.vu.nl/~elec), 11 January 2000 Electronics Group // [3] IEEE 488.2 Standard, revision IEEE Std 488.2-1987 (1992) // "IEEE Standard Codes, Formats, Protocols, and Common Commands for Use With IEEE Std 488.1-1987, IEEE // ================================================================================= // @fsqvbl_CommandHandlerMEASnSWITCH_group // State's virtual table static void fsqe_CommandHandlerLED_Switch_Group( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ); static void fsql_CommandHandlerLED_Switch_Group( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ); static const struct fFSeqEntry_t * fsqf_CommandHandlerLED_Switch_Group( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx, const struct fFSeqEntry_t * * pDeferredNext ); const fFSeqVTable_t fsqvbl_CommandHandlerLEDSWITCH_group = { .f = fsqf_CommandHandlerLED_Switch_Group, .enter = fsqe_CommandHandlerLED_Switch_Group, .leave = fsql_CommandHandlerLED_Switch_Group }; static void fsqe_CommandHandlerLED_Switch_Group( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ) { sProcessProgramDataCommonContext_t * common_ctx = ctx; common_ctx->MeasAndSwitch.idx = 0; SCPI_PARSE_ARGUMENTS( common_ctx ); (void)common_ctx->argsParserStatus; // status is modified } static void fsql_CommandHandlerLED_Switch_Group( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ) { } static const struct fFSeqEntry_t * fsqf_CommandHandlerLED_Switch_Group( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx, const struct fFSeqEntry_t * * pDeferredNext ) { const fFSeqEntry_t * nextstate = NULL; sProcessProgramDataCommonContext_t * common_ctx = ctx; sScpiParserContext_t * global_ctx = common_ctx->global_ctx; switch( common_ctx->event ) { case eProgramData_Event_Write: { if( eScpiStatus_success != common_ctx->argsParserStatus ) // check argument parser status { common_ctx->status = eProgramDataArgumentSyntax; // parameter syntax error, caller should generate error message } else if( ! common_ctx->isQuery ) { common_ctx->status = eProgramDataIllegalArgument; // forward set, illegal parameter value, caller should generate error message if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerLED1 ) { // process first argument (switch state) common_ctx->SwitchState.state = SCPI_PROCESS_ARGUMENT_CHARACTER( common_ctx, IND_AllowedValues_SwitchState, 0 ); } else if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerLED2 ) { common_ctx->SwitchState.state = SCPI_PROCESS_ARGUMENT_CHARACTER( common_ctx, IND_AllowedValues_SwitchState, 0 ); } else if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerWRMP ) { common_ctx->SwitchState.state = SCPI_PROCESS_ARGUMENT_CHARACTER( common_ctx, IND_AllowedValues_SwitchState, 0 ); } // check result if( SCPI_ARGUMENT_CHARACTER_INVALID_ID == common_ctx->SwitchState.state ) { (void)common_ctx->status; // eProgramDataIllegalArgument } else { size_t error = 0; if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerLED1 ) { if( common_ctx->SwitchState.state == 0 ) { } else if( common_ctx->SwitchState.state == 2 ) { } else if( common_ctx->SwitchState.state == 3 ) { } else { error = 1; // Key State Syntax Error } } else if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerLED2 ) { if( common_ctx->SwitchState.state == 0 ) { LEDHandle.harmup_stop(); LEDHandle.SetMode(eLedMode_Idle); ledRed(false); ledGreen(false); } else if( common_ctx->SwitchState.state == 2 ) { LEDHandle.harmup_stop(); LEDHandle.SetMode(eLedMode_Idle); ledRed(false); ledGreen(true); } else if( common_ctx->SwitchState.state == 3 ) { LEDHandle.harmup_stop(); LEDHandle.SetMode(eLedMode_Idle); ledRed(true); ledGreen(false); } else { error = 1; // Key State Syntax Error } } else if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerWRMP ) { if( common_ctx->SwitchState.state == 0 ) { LEDHandle.harmup_stop(); LEDHandle.SetMode(eLedMode_Normal); LEDHandle.harmup_stop(); } else if( common_ctx->SwitchState.state == 1 ) { LEDHandle.harmup_stop(); LEDHandle.SetMode(eLedMode_Normal); LEDHandle.harmup_init(); } else { error = 1; // Key State Syntax Error } } switch( error ) { case 1: // Key State Syntax Error { (void)common_ctx->status; // eProgramDataIllegalArgument } break; case 2: // Key State unavailable in this device { (void)common_ctx->status; // eProgramDataIllegalArgument } break; } if( 0 != error ) break; common_ctx->status = eProgramDataDone; // request processed, wait for reading... } } else { common_ctx->status = eProgramDataNeedRead; // request processed, wait for reading... } } break; case eProgramData_Event_Read: { // @idx - current position of the source data to be outputed if( common_ctx->MeasAndSwitch.idx == 0 ) // first reading { size_t length = 0; if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerLED1 ) { eLed_color_t color = GET_LED_COLOR_STATE(LED1); if(color == eLed_color_off) { const char temp[5]= "OFF\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } else if(color == eLed_color_red) { const char temp[5]= "RED\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } else if(color == eLed_color_grn) { const char temp[5]= "GRN\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } } else if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerLED2 ) { eLed_color_t color = GET_LED_COLOR_STATE(LED2); if(color == eLed_color_off) { const char temp[5]= "OFF\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } else if(color == eLed_color_red) { const char temp[5]= "RED\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } else if(color == eLed_color_grn) { const char temp[5]= "GRN\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } } else if( common_ctx->handler_ctx == &fsqvbl_CommandHandlerWRMP ) { eLed_color_t color = GET_LED_COLOR_STATE(LED2); if(color == eLed_color_red) { const char temp[5]= "ON\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } else if(color == eLed_color_grn) { const char temp[5]= "OFF\n"; length = _snprintf( common_ctx->tempBuffer, sizeof(common_ctx->tempBuffer), "%s", temp); } } if( length > 0 ) { // place null-terminator in the end of line common_ctx->tempBuffer[length] = '\0'; } else { fsq_RaiseError( SCPI_ERROR_INTERNAL_DEVICE, SCPI_ERROR_INTERNAL_DEVICE_MSG, global_ctx->sParser.xHandlerToken.shead, global_ctx->sParser.xHandlerToken.stail ); common_ctx->status = eProgramData_SpecificError; // specific error already generated break; } } // Since @done flag is set, this dispatcher shall not be called anymore. // Since this handler is implemented as a single-state automat, there no // ... other states to go to: (void)nextstate; // modify current postion index: SCPI_RESPONSE_HELPER( common_ctx, common_ctx->MeasAndSwitch.idx ); } break; } return nextstate; }