#include #define PRINT_VALUE_MIN_SPACE (20) // DO NOT TOUCH! =20, see @printValues #define SCPI_ARGS_N 1 #define SCPI_ARGS_MANDATORY_N 0 #include "app/scpi/scpi_handler.h" // ----- // @argTokens, @argTypes // Declare argument parser entities // Supported arguments: 1=CHARACTER DECLARE_SCPI_ARGS( eScpiArg_Character ); // Argument 1 Character Values allowed list / Memory Bank DECLARE_ARGUMENT_CHARACTER_ALLOWED_LIST_IMPORT( MemTable_AllowedValues_Bank ); #include "app/scpi/commandHandlers/memory_table_freq_data.h" #include "app/nfm/nfm_base.h" // Refer to: // [1] SCPI Specification, revision 1999.0 // "Standard Commands for Programmable Instruments (SCPI), VERSION 1999.0, May 1999" // [2] Gpib Programming Tutorial, (http://g2pc1.bu.edu/~qzpeng/gpib/manual/GpibProgTut.pdf) // Electronics Group (http://www.few.vu.nl/~elec), 11 January 2000 Electronics Group // [3] IEEE 488.2 Standard, revision IEEE Std 488.2-1987 (1992) // "IEEE Standard Codes, Formats, Protocols, and Common Commands for Use With IEEE Std 488.1-1987, IEEE // ================================================================================= // @fsqvbl_CommandHandlerMemoryTableFrequencyData // State's virtual table static size_t printValues( char * pcBuffer, size_t szBuffer, const double * pValues, size_t nValues, bool theLastOne ); static void fsqe_CommandHandlerMemoryTableFrequencyData( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ); static void fsql_CommandHandlerMemoryTableFrequencyData( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ); static const struct fFSeqEntry_t * fsqf_CommandHandlerMemoryTableFrequencyData( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx, const struct fFSeqEntry_t * * pDeferredNext ); const fFSeqVTable_t fsqvbl_CommandHandlerMEMoryTABLeFREQuencyDATA = { .f = fsqf_CommandHandlerMemoryTableFrequencyData, .enter = fsqe_CommandHandlerMemoryTableFrequencyData, .leave = fsql_CommandHandlerMemoryTableFrequencyData }; static void fsqe_CommandHandlerMemoryTableFrequencyData( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ) { sProcessProgramDataCommonContext_t * common_ctx = ctx; SCPI_PARSE_ARGUMENTS( common_ctx ); (void)common_ctx->argsParserStatus; // status is modified common_ctx->MemTableFreqData.idx = 0; common_ctx->MemTableFreqData.nchs = 0; common_ctx->MemTableFreqData.bank = 0; common_ctx->MemTableFreqData.init = false; common_ctx->MemTableFreqData.isdone = false; memset( &common_ctx->MemTableFreqData.getctx, 0, sizeof(common_ctx->MemTableFreqData.getctx) ); } static void fsql_CommandHandlerMemoryTableFrequencyData( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx ) { } static const struct fFSeqEntry_t * fsqf_CommandHandlerMemoryTableFrequencyData( const struct fFSeqEntry_t * this, tFSeqCtx_t ctx, const struct fFSeqEntry_t * * pDeferredNext ) { const fFSeqEntry_t * nextstate = NULL; sProcessProgramDataCommonContext_t * common_ctx = ctx; sScpiParserContext_t * global_ctx = common_ctx->global_ctx; switch( common_ctx->event ) { case eProgramData_Event_Write: { if( ! common_ctx->isQuery ) { common_ctx->status = eProgramDataSyntaxError; // invalid command header type: COMMAND not supported } else if( eScpiStatus_success != common_ctx->argsParserStatus ) // check argument parser status { common_ctx->status = eProgramDataArgumentSyntax; // parameter syntax error, caller should generate error message } else { common_ctx->status = eProgramDataIllegalArgument; // forward set, illegal parameter value, caller should generate error message if( common_ctx->args > 0 ) // process first argument (bank) common_ctx->MemTableFreqData.bank = SCPI_PROCESS_ARGUMENT_CHARACTER( common_ctx, MemTable_AllowedValues_Bank, 0 ); else // default parameter common_ctx->MemTableFreqData.bank = 0; // Factory // check result if( SCPI_ARGUMENT_CHARACTER_INVALID_ID != common_ctx->MemTableFreqData.bank ) { common_ctx->status = eProgramDataNeedRead; // request processed, wait for reading... } } } break; case eProgramData_Event_Read: { do { // @idx - current position of the source data to be outputed if( common_ctx->MemTableFreqData.idx >= common_ctx->MemTableFreqData.nchs ) { if( common_ctx->MemTableFreqData.isdone ) break; // There no already prepared data in @tempBuffer if( ! common_ctx->MemTableFreqData.init ) // first reading { eChrz_t chrz = (eChrz_t)((eChFactory) + common_ctx->MemTableFreqData.bank); common_ctx->status = eProgramDataIllegalArgument; // forward set switch( NFMClass->methods.xCharacterization.getScaleFreqs_Init( chrz, common_ctx->MemTableFreqData.dFreqPoints, cellsof(common_ctx->MemTableFreqData.dFreqPoints), &common_ctx->MemTableFreqData.getctx ) ) { case eNFMGetPointError_Success: common_ctx->MemTableFreqData.init = true; break; case eNFMGetPointError_DataError: goto L_FrequencySegment_DATAERR; case eNFMGetPointError_InvalidValue: default: goto L_FrequencySegment_PARAMERR; } } #if SCPI_MAX_CMD_TEMP_BUFFER < PRINT_VALUE_MIN_SPACE #error Invalid value 'SCPI_MAX_CMD_TEMP_BUFFER' #endif // The length of temporary string buffer, length of one printable number and number of cells in @MemTableFreqData.dFreqPoints // are interconnected. Number of cells @MemTableFreqData.dFreqPoints should be equal or be greater than maximum number of // printed numbers into the @tempBuffer. But it is recommend that these numbers be equal. // Equal (no unused cells in @dFreqPoints): STATIC_ASSERT( (sizeof(common_ctx->tempBuffer) / PRINT_VALUE_MIN_SPACE) == cellsof(common_ctx->MemTableFreqData.dFreqPoints), "Invalid size" ); // Greater (there is unused cells in @dFreqPoints): //STATIC_ASSERT( (sizeof(common_ctx->tempBuffer) / PRINT_VALUE_MIN_SPACE) <= cellsof(common_ctx->MemTableFreqData.dFreqPoints), "Invalid size" ); size_t nPointsRetrieve = sizeof(common_ctx->tempBuffer) / PRINT_VALUE_MIN_SPACE; switch( NFMClass->methods.xCharacterization.getScaleFreqs_Next( &common_ctx->MemTableFreqData.getctx, &nPointsRetrieve ) ) { case eNFMGetPointError_Success: common_ctx->MemTableFreqData.isdone = true; case eNFMGetPointError_OutOfBuffer: case eNFMGetPointError_Limit: { size_t l = 0; if( nPointsRetrieve > 0 ) { l = printValues( common_ctx->tempBuffer, sizeof( common_ctx->tempBuffer ), common_ctx->MemTableFreqData.dFreqPoints, nPointsRetrieve, common_ctx->MemTableFreqData.isdone ); } common_ctx->tempBuffer[ l ] = '\0'; common_ctx->MemTableFreqData.idx = 0; // reset prepared characters index common_ctx->MemTableFreqData.nchs = l; // prepared characters in buffer } break; case eNFMGetPointError_DataError: goto L_FrequencySegment_DATAERR; case eNFMGetPointError_InvalidValue: default: goto L_FrequencySegment_PARAMERR; } } // Since @done flag is set, this dispatcher shall not be called anymore. // Since this handler is implemented as a single-state automat, there no // ... other states to go to: (void)nextstate; // modify current postion index: SCPI_RESPONSE_HELPER_EXTDONE_IDXINC( common_ctx, common_ctx->MemTableFreqData.idx, common_ctx->MemTableFreqData.isdone ); } // While output buffer swallows all the prepared data from @tempBuffer while( (common_ctx->MemTableFreqData.idx >= common_ctx->MemTableFreqData.nchs) ); bool bufferEmpty = (common_ctx->MemTableFreqData.idx >= common_ctx->MemTableFreqData.nchs); SCPI_RESPONSE_HELPER_EXTDONE_SET( common_ctx, bufferEmpty && common_ctx->MemTableFreqData.isdone ); } break; } return nextstate; L_FrequencySegment_DATAERR: // Formal call: in case the parameter is optional, the token is unfilled. // So it is required to fill the token with correct values from allowed list. SCPI_ARGUMENT_CHARACTER_VALUE_TOKEN( MemTable_AllowedValues_Bank, common_ctx->MemTableFreqData.bank, &common_ctx->argTokens[0] ); fsq_RaiseErrorEx( SCPI_ERROR_DATA_CORRUPTED, SCPI_ERROR_DATA_CORRUPTED_MSG, common_ctx->argTokens[0].shead, common_ctx->argTokens[0].stail, global_ctx->sParser.xHandlerToken.shead, global_ctx->sParser.xHandlerToken.stail ); common_ctx->status = eProgramData_SpecificError; // specific error already generated return NULL; L_FrequencySegment_PARAMERR: fsq_RaiseError( SCPI_ERROR_INTERNAL_DEVICE, SCPI_ERROR_INTERNAL_DEVICE_MSG, global_ctx->sParser.xHandlerToken.shead, global_ctx->sParser.xHandlerToken.stail ); common_ctx->status = eProgramData_SpecificError; // specific error already generated return NULL; } // @printValues // Prints an array of double numbers into the buffer. // If there no free space in the output buffer while not all the numbers are printed, function returns 0; // @pcBuffer - output buffer; // @szBuffer - size of output buffer; // @pValues - an array of numbers to print; // @nValues - amount of numbers to print; // @theLastOne - the last call indicator // Returns: // - In case all of numbers are printed: number of bytes printed into the output buffer; // - 0 otherwise static size_t printValues( char * pcBuffer, size_t szBuffer, const double * pValues, size_t nValues, bool theLastOne ) { // One point has the following format: // , // One number has 16 symbols length plus 2 (comma and space) // So, 18 characters required to print one point. // To prevent overflowing by _snprintf() with printing null-term, // it is required at lease 20 characters free, see @PRINT_VALUE_MIN_SPACE size_t idx = 0; while( nValues > 0 ) { size_t l = 0; if( (szBuffer-idx) >= PRINT_VALUE_MIN_SPACE ) { if( theLastOne && (nValues==1) ) l = _snprintf( &pcBuffer[idx], (szBuffer-idx), "%1.10e", (*pValues++) ); else l = _snprintf( &pcBuffer[idx], (szBuffer-idx), "%1.10e%c%c", (*pValues++), ',' , ' ' ); } if( l == 0 || l >= (szBuffer-idx) ) { return 0; // insuffecient buffer } idx += l; nValues--; } return idx; }