led.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. #include "app/led/led.h"
  2. #include "core/csect.h"
  3. #include "core/main.h"
  4. #include "core/config.h"
  5. #include "core/config_pins.h"
  6. #include "app/rseq/rseq.h"
  7. //#define LED_LOWBAT_FLARE_INTERVAL 5000
  8. //#define LED_LOWBAT_FLARE_TIME 10
  9. //#define LED_POLARITY_INVERTED 0
  10. #define LED_LOWBAT_FLARE_INTERVAL CONFIG_LED_LOWBAT_FLASH_INTERVAL
  11. #define LED_LOWBAT_FLARE_TIME CONFIG_LED_LOWBAT_FLASH_TIME
  12. #define LED_POLARITY_INVERTED CONFIG_LED_POLARITY_INVERTED
  13. #define LED_OKBAT_FLARE_ENABLE CONFIG_LED_OKBAT_FLASH_ENABLE
  14. #define LED_OKBAT_FLARE_INTERVAL CONFIG_LED_OKBAT_FLASH_INTERVAL
  15. #define LED_OKBAT_FLARE_TIME CONFIG_LED_OKBAT_FLASH_TIME
  16. #define LED_SIGNALING_PERIOD CONFIG_LED_SIGNALING_PERIOD
  17. #define LED_SIGNALING_TIME CONFIG_LED_SIGNALING_TIME
  18. #define LED_AUTOMATALARM_COMBINED 0
  19. static volatile eLedMode_t g_LedMode = eLedMode_Idle;
  20. static volatile bool g_bHarmUpEnable = false;
  21. static volatile uint32_t g_nHarmUpTimestamp = 0ul;
  22. // -----------
  23. #pragma pack(push, 1)
  24. typedef struct
  25. {
  26. struct
  27. {
  28. uint32_t gp_timer_counter;
  29. uint32_t gp_timer_maximum;
  30. uint32_t gp_counter_signaling;
  31. }
  32. counters;
  33. struct
  34. {
  35. bool bLowBatterySignal;
  36. bool bUSBActiveSignal;
  37. bool bSignalStage; // false during flashing, true during waiting next flash
  38. bool bAutomatAlarm;
  39. bool bHarmupComplete; // false during harmup interval since startup, the it becomes true
  40. }
  41. state;
  42. }
  43. sData_t;
  44. #pragma pack(pop)
  45. // -----------
  46. static bool seqirq_state_startup( void * arg );
  47. static bool seqirq_state_signaling( void * arg );
  48. static bool seqirq_state_signaling_rollover( void * arg );
  49. static bool seqirq_state_timer_nextstate( void * arg );
  50. #if LED_OKBAT_FLARE_ENABLE == 0
  51. static bool seqirq_state_check_lowbat( void * arg );
  52. #endif
  53. #if 0 // useless
  54. static bool seqirq_state_timer_prevstate( void * arg );
  55. static bool seqirq_state_lowbat_serve( void * arg );
  56. static bool seqirq_state_check_usbactive( void * arg );
  57. static bool seqirq_state_update_usbactive( void * arg );
  58. #endif
  59. static bool seqirq_state_update_ledstatus( void * arg );
  60. // -----------
  61. static fRoutine_t * rseq_timer_list[ 5 ];
  62. static sRoutineSequence_t rseq_timer;
  63. static sData_t g_sData;
  64. static bool IFace_Led_Init();
  65. static void IFace_Led_Tick();
  66. static bool IFace_Led_SetMode( eLedMode_t mode );
  67. static void IFace_Led_SetLowBattery( bool batteryLow );
  68. static void IFace_Led_SetUSBConnectivity( bool usbActive );
  69. static void IFace_Led_SetAutomatAlarm( bool automatAlarm );
  70. static void IFace_Led_SetHarmupStatus( bool harmupCompleted );
  71. static bool IFace_Led_DeInit();
  72. static void harmup_init();
  73. static void harmup_serve();
  74. static void harmup_stop();
  75. const sLED_Handle_t LEDHandle = {
  76. .Init = IFace_Led_Init,
  77. .Tick = IFace_Led_Tick,
  78. .SetMode = IFace_Led_SetMode,
  79. .SetLowBattery = IFace_Led_SetLowBattery,
  80. .SetUSBConnectivity = IFace_Led_SetUSBConnectivity,
  81. .SetAutomatAlarm = IFace_Led_SetAutomatAlarm,
  82. .SetHarmupStatus = IFace_Led_SetHarmupStatus,
  83. .DeInit = IFace_Led_DeInit,
  84. .harmup_init = harmup_init,
  85. .harmup_serve = harmup_serve,
  86. .harmup_stop = harmup_stop
  87. };
  88. static inline bool seqTake( void * arg )
  89. {
  90. DI();
  91. return true;
  92. }
  93. static inline bool seqFree( void * arg )
  94. {
  95. EI();
  96. return true;
  97. }
  98. //#if CONFIG_HARMUP_INTERVAL > 0
  99. static void harmup_init()
  100. {
  101. g_bHarmUpEnable = true;
  102. g_nHarmUpTimestamp = HAL_GetTick();
  103. LEDHandle.SetHarmupStatus( !g_bHarmUpEnable );
  104. }
  105. static void harmup_serve()
  106. {
  107. if( g_bHarmUpEnable )
  108. {
  109. if( (HAL_GetTick() - g_nHarmUpTimestamp)/1000 > (CONFIG_HARMUP_INTERVAL) )
  110. {
  111. g_bHarmUpEnable = false;
  112. LEDHandle.SetHarmupStatus( !g_bHarmUpEnable );
  113. }
  114. }
  115. }
  116. static void harmup_stop()
  117. {
  118. g_bHarmUpEnable = false;
  119. LEDHandle.SetHarmupStatus( !g_bHarmUpEnable );
  120. }
  121. //#endif
  122. void ledGreen( bool state )
  123. {
  124. #if LED_POLARITY_INVERTED
  125. HAL_GPIO_WritePin( CONFIG_PORT__LED_GREEN, CONFIG_PIN__LED_GREEN, (state)?GPIO_PIN_RESET:GPIO_PIN_SET );
  126. #else
  127. HAL_GPIO_WritePin( CONFIG_PORT__LED_GREEN, CONFIG_PIN__LED_GREEN, (state)?GPIO_PIN_SET:GPIO_PIN_RESET );
  128. #endif
  129. }
  130. void ledRed( bool state )
  131. {
  132. #if LED_POLARITY_INVERTED
  133. HAL_GPIO_WritePin( CONFIG_PORT__LED_RED, CONFIG_PIN__LED_RED, (state)?GPIO_PIN_RESET:GPIO_PIN_SET );
  134. #else
  135. HAL_GPIO_WritePin( CONFIG_PORT__LED_RED, CONFIG_PIN__LED_RED, (state)?GPIO_PIN_SET:GPIO_PIN_RESET );
  136. #endif
  137. }
  138. void setLedColor( eLed_color_t color )
  139. {
  140. switch ( color )
  141. {
  142. case eLed_color_off:
  143. {
  144. ledRed(false);
  145. ledGreen(false);
  146. }
  147. break;
  148. case eLed_color_red:
  149. {
  150. ledRed(true);
  151. ledGreen(false);
  152. }
  153. break;
  154. case eLed_color_grn:
  155. {
  156. ledRed(false);
  157. ledGreen(true);
  158. }
  159. break;
  160. case eLed_color_orange:
  161. {
  162. ledRed(true);
  163. ledGreen(true);
  164. }
  165. break;
  166. }
  167. }
  168. static bool IFace_Led_Init()
  169. {
  170. ledGreen( false );
  171. ledRed( false );
  172. #if LED_POLARITY_INVERTED
  173. {
  174. GPIO_InitTypeDef GPIO_InitStruct = {0};
  175. // Configure pin: OpenDrain with no pulls
  176. GPIO_InitStruct.Pin = CONFIG_PIN__LED_RED;
  177. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
  178. GPIO_InitStruct.Pull = GPIO_NOPULL;
  179. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
  180. HAL_GPIO_Init(CONFIG_PORT__LED_RED, &GPIO_InitStruct);
  181. }
  182. {
  183. GPIO_InitTypeDef GPIO_InitStruct = {0};
  184. // Configure pin: OpenDrain with no pulls
  185. GPIO_InitStruct.Pin = CONFIG_PIN__LED_GREEN;
  186. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  187. GPIO_InitStruct.Pull = GPIO_NOPULL;
  188. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
  189. HAL_GPIO_Init(CONFIG_PORT__LED_GREEN, &GPIO_InitStruct);
  190. }
  191. #else
  192. {
  193. GPIO_InitTypeDef GPIO_InitStruct = {0};
  194. // Configure pin: OpenDrain with no pulls
  195. GPIO_InitStruct.Pin = CONFIG_PIN__LED_RED;
  196. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  197. GPIO_InitStruct.Pull = GPIO_NOPULL;
  198. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
  199. HAL_GPIO_Init(CONFIG_PORT__LED_RED, &GPIO_InitStruct);
  200. }
  201. {
  202. GPIO_InitTypeDef GPIO_InitStruct = {0};
  203. // Configure pin: OpenDrain with no pulls
  204. GPIO_InitStruct.Pin = CONFIG_PIN__LED_GREEN;
  205. GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  206. GPIO_InitStruct.Pull = GPIO_NOPULL;
  207. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_MEDIUM;
  208. HAL_GPIO_Init(CONFIG_PORT__LED_GREEN, &GPIO_InitStruct);
  209. }
  210. #endif
  211. ledRed(false);
  212. ledGreen(false);
  213. seqTake(&g_sData);
  214. g_sData.counters.gp_counter_signaling = 0;
  215. g_sData.counters.gp_timer_counter = 0;
  216. g_sData.counters.gp_timer_maximum = 0;
  217. g_sData.state.bLowBatterySignal = false;
  218. g_sData.state.bSignalStage = false;
  219. g_sData.state.bUSBActiveSignal = false;
  220. g_sData.state.bAutomatAlarm = false;
  221. g_sData.state.bHarmupComplete = false;
  222. seqFree(&g_sData);
  223. rsa_sequence_init( &rseq_timer, &g_sData, rseq_timer_list, sizeof(rseq_timer_list)/sizeof(*rseq_timer_list) );
  224. rsa_sequence_setlockers( &rseq_timer, seqTake, seqFree );
  225. IFace_Led_SetMode( eLedMode_Signaling );
  226. rsa_sequence_insert_routine( &rseq_timer, &seqirq_state_startup );
  227. return true;
  228. }
  229. eLed_color_t GET_LED_COLOR_STATE( int number )
  230. {
  231. eLed_color_t led_color = eLed_color_off;
  232. // switch (number)
  233. // {
  234. // case LED1:
  235. // {
  236. // led_color |= HAL_GPIO_ReadPin( CONFIG_PORT_28LED_RED, CONFIG_PIN_28LED_RED ) == GPIO_PIN_RESET ? eLed_color_red : eLed_color_off;
  237. // led_color |= HAL_GPIO_ReadPin( CONFIG_PORT_28LED_GREEN, CONFIG_PIN_28LED_GREEN) == GPIO_PIN_RESET ? eLed_color_grn : eLed_color_off;
  238. // }break;
  239. // case LED2:
  240. // {
  241. // led_color |= HAL_GPIO_ReadPin( CONFIG_PORT__LED_GREEN, CONFIG_PIN__LED_GREEN)== GPIO_PIN_RESET ? eLed_color_grn : eLed_color_off;
  242. // led_color |= HAL_GPIO_ReadPin( CONFIG_PORT__LED_RED, CONFIG_PIN__LED_RED ) == GPIO_PIN_RESET ? eLed_color_red : eLed_color_off;
  243. // }break;
  244. // }
  245. return led_color;
  246. }
  247. static void IFace_Led_Tick()
  248. {
  249. if( rsa_sequence_icall( &rseq_timer ) )
  250. {
  251. rsa_sequence_ireset( &rseq_timer );
  252. }
  253. }
  254. static bool IFace_Led_SetMode( eLedMode_t mode )
  255. {
  256. bool bSet = true;
  257. switch( mode )
  258. {
  259. case eLedMode_Idle:
  260. {
  261. rsa_sequence_clear( &rseq_timer );
  262. ledGreen( false );
  263. ledRed( false );
  264. }
  265. break;
  266. case eLedMode_Signaling:
  267. {
  268. seqTake(&g_sData);
  269. rsa_sequence_iclear( &rseq_timer );
  270. rsa_sequence_iinsert_routine( &rseq_timer, &seqirq_state_signaling );
  271. rsa_sequence_iinsert_routine( &rseq_timer, &seqirq_state_timer_nextstate );
  272. rsa_sequence_iinsert_routine( &rseq_timer, &seqirq_state_signaling_rollover );
  273. g_sData.counters.gp_counter_signaling = 1 + (LED_SIGNALING_TIME / LED_SIGNALING_PERIOD);
  274. g_sData.state.bSignalStage = false;
  275. seqFree(&g_sData);
  276. ledGreen( false );
  277. ledRed( false );
  278. }
  279. break;
  280. case eLedMode_Normal:
  281. {
  282. rsa_sequence_clear( &rseq_timer );
  283. rsa_sequence_insert_routine( &rseq_timer, &seqirq_state_startup );
  284. }
  285. break;
  286. default: bSet = false;
  287. }
  288. if( bSet )
  289. {
  290. __DI__ g_LedMode = mode; __EI__
  291. }
  292. return bSet;
  293. }
  294. static void IFace_Led_SetLowBattery( bool batteryLow )
  295. {
  296. seqTake(&g_sData);
  297. if( g_sData.state.bLowBatterySignal ^ batteryLow )
  298. {
  299. rsa_sequence_ireset( &rseq_timer ); // make @seqirq_state_update_usbactive to be called
  300. g_sData.state.bLowBatterySignal = batteryLow;
  301. g_sData.state.bSignalStage = false;
  302. }
  303. seqFree(&g_sData);
  304. }
  305. static void IFace_Led_SetAutomatAlarm( bool automatAlarm )
  306. {
  307. seqTake(&g_sData);
  308. if( g_sData.state.bAutomatAlarm ^ automatAlarm )
  309. {
  310. rsa_sequence_ireset( &rseq_timer ); // make @seqirq_state_update_usbactive to be called
  311. g_sData.state.bAutomatAlarm = automatAlarm;
  312. g_sData.state.bSignalStage = false;
  313. }
  314. seqFree(&g_sData);
  315. }
  316. static void IFace_Led_SetUSBConnectivity( bool usbActive )
  317. {
  318. seqTake(&g_sData);
  319. if( g_sData.state.bUSBActiveSignal ^ usbActive )
  320. {
  321. rsa_sequence_ireset( &rseq_timer ); // make @seqirq_state_update_usbactive to be called
  322. g_sData.state.bUSBActiveSignal = usbActive;
  323. }
  324. seqFree(&g_sData);
  325. }
  326. static void IFace_Led_SetHarmupStatus( bool harmupCompleted )
  327. {
  328. seqTake(&g_sData);
  329. if( g_sData.state.bHarmupComplete ^ harmupCompleted )
  330. {
  331. rsa_sequence_ireset( &rseq_timer ); // make @seqirq_state_update_usbactive to be called
  332. g_sData.state.bHarmupComplete = harmupCompleted;
  333. }
  334. seqFree(&g_sData);
  335. }
  336. static bool IFace_Led_DeInit()
  337. {
  338. seqTake(&g_sData);
  339. rsa_sequence_iclear( &rseq_timer );
  340. seqFree(&g_sData);
  341. ledGreen( false );
  342. ledRed( false );
  343. {
  344. GPIO_InitTypeDef GPIO_InitStruct = {0};
  345. // Configure the pin muxing
  346. GPIO_InitStruct.Pin = CONFIG_PIN__LED_RED;
  347. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  348. GPIO_InitStruct.Pull = GPIO_NOPULL;
  349. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  350. HAL_GPIO_Init(CONFIG_PORT__LED_RED, &GPIO_InitStruct);
  351. }
  352. {
  353. GPIO_InitTypeDef GPIO_InitStruct = {0};
  354. // Configure the pin muxing
  355. GPIO_InitStruct.Pin = CONFIG_PIN__LED_GREEN;
  356. GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
  357. GPIO_InitStruct.Pull = GPIO_NOPULL;
  358. GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  359. HAL_GPIO_Init(CONFIG_PORT__LED_GREEN, &GPIO_InitStruct);
  360. }
  361. return true;
  362. }
  363. //------------------------------------------------------------------------------
  364. // {IFace_Led_SetMode} => [seqirq_state_startup]
  365. /* IRQ */static bool seqirq_state_startup( void * arg )
  366. {
  367. sData_t * pData = (sData_t*)(arg);
  368. ledGreen( false );
  369. ledRed( false );
  370. rsa_sequence_iclear( &rseq_timer );
  371. // Note: seqirq_state_update_ledstatus is responsible for LED indicator control.
  372. // LED Indicator algorythm: see @seqirq_state_update_ledstatus routine for details
  373. rsa_sequence_iinsert_routine( &rseq_timer, &seqirq_state_update_ledstatus ); // never ends
  374. (void)pData;
  375. return false; // return false to prevent calling next routine
  376. }
  377. //------------------------------------------------------------------------------
  378. //------------------------------------------------------------------------------
  379. // {IFace_Led_SetMode} => [seqirq_state_signaling]
  380. /* IRQ */static bool seqirq_state_signaling( void * arg )
  381. {
  382. sData_t * pData = (sData_t*)(arg);
  383. ledGreen( pData->state.bSignalStage );
  384. ledRed( !pData->state.bSignalStage );
  385. pData->counters.gp_timer_counter = 0;
  386. pData->counters.gp_timer_maximum = LED_SIGNALING_PERIOD;
  387. return true; // go to the timer routine
  388. }
  389. //------------------------------------------------------------------------------
  390. //------------------------------------------------------------------------------
  391. // {IFace_Led_SetMode} => [seqirq_state_signaling_rollover]
  392. /* IRQ */static bool seqirq_state_signaling_rollover( void * arg )
  393. {
  394. sData_t * pData = (sData_t*)(arg);
  395. if( pData->counters.gp_counter_signaling > 0 )
  396. {
  397. pData->counters.gp_counter_signaling --;
  398. }
  399. if( pData->counters.gp_counter_signaling > 0 )
  400. {
  401. rsa_sequence_ireset( &rseq_timer );
  402. pData->state.bSignalStage = !pData->state.bSignalStage;
  403. }
  404. else
  405. {
  406. IFace_Led_SetMode( eLedMode_Normal );
  407. }
  408. return false; // go to the timer routine
  409. }
  410. //------------------------------------------------------------------------------
  411. #if 0 // useless
  412. // {seqirq_state_startup => seqirq_state_update_usbactive}
  413. /* IRQ */ static bool seqirq_state_update_usbactive( void * arg )
  414. {
  415. sData_t * pData = (sData_t*)(arg);
  416. #if LED_AUTOMATALARM_COMBINED == 0
  417. // Single mode: check for USB-active first
  418. if( pData->state.bUSBActiveSignal )
  419. {
  420. // If USB-active is asserted:
  421. ledRed( false );
  422. ledGreen( true ); // Show GREEN indicator
  423. }
  424. else
  425. // Then check for Alarm
  426. if( pData->state.bAutomatAlarm )
  427. {
  428. // If Automat Alarm is asserted:
  429. ledRed( true ); // Show RED indicator
  430. ledGreen( false );
  431. }
  432. else
  433. {
  434. ledRed( false ); // Blow both indicators
  435. ledGreen( false );
  436. }
  437. #else
  438. // Combined mode: check for USB-active flag only.
  439. // Check if USB-Active signal is asserted and update USB-activity LED
  440. ledGreen( pData->state.bUSBActiveSignal );
  441. #endif
  442. return true; // let the next routine to be called
  443. }
  444. #endif
  445. //------------------------------------------------------------------------------
  446. // {seqirq_state_startup => seqirq_state_update_usbactive}
  447. /* IRQ */ static bool seqirq_state_update_ledstatus( void * arg )
  448. {
  449. sData_t * pData = (sData_t*)(arg);
  450. if( //pData->state.bLowBatterySignal // LOW BATTERY
  451. //||
  452. //pData->state.bAutomatAlarm // AUTOMAT SIGNAL ALARM
  453. //||
  454. (!pData->state.bHarmupComplete) // DEVICE IS STILL HARMING
  455. )
  456. {
  457. ledRed( true ); // SHOW RED INDICATOR
  458. ledGreen( false );
  459. }
  460. else
  461. {
  462. ledRed( false );
  463. ledGreen( true ); // SHOW GREEN INDICATOR
  464. }
  465. return false; // false: never leave this routine
  466. }
  467. //------------------------------------------------------------------------------
  468. #if 0 // useless
  469. // {seqirq_state_startup => seqirq_state_update_usbactive => seqirq_state_check_usbactive}
  470. /* IRQ */ static bool seqirq_state_check_usbactive( void * arg )
  471. {
  472. sData_t * pData = (sData_t*)(arg);
  473. #if LED_AUTOMATALARM_COMBINED == 0
  474. // Single mode: show only one indicator - either USB activity, or Alarm, or battery mode
  475. // Check if USB-Active or Automat Alarm signals are asserted
  476. if( pData->state.bUSBActiveSignal || pData->state.bAutomatAlarm )
  477. {
  478. // If asserted, return false to prevent calling next routine
  479. return false;
  480. }
  481. #else
  482. // Combined mode: wait for USB disconnection to enter combined indication mode
  483. // Check if USB-Active signal is asserted
  484. if( pData->state.bUSBActiveSignal )
  485. {
  486. // If asserted, return false to prevent calling next routine
  487. return false;
  488. }
  489. #endif
  490. return true; // let the next routine to be called
  491. }
  492. #endif
  493. //------------------------------------------------------------------------------
  494. #if LED_OKBAT_FLARE_ENABLE == 0
  495. // {seqirq_state_startup => seqirq_state_update_usbactive => seqirq_state_check_usbactive => seqirq_state_check_lowbat}
  496. /* IRQ */ static bool seqirq_state_check_lowbat( void * arg )
  497. {
  498. sData_t * pData = (sData_t*)(arg);
  499. // If LowBattery signal is not asserted, stay in this routine
  500. // If LowBattery signal is asserted, @bLowBatterySignal is true, so
  501. // returning 'true' causes the next routine to be called.
  502. return pData->state.bLowBatterySignal;
  503. }
  504. #endif
  505. //------------------------------------------------------------------------------
  506. #if 0 // useless
  507. // {seqirq_state_startup => seqirq_state_update_usbactive => seqirq_state_check_usbactive => seqirq_state_check_lowbat => seqirq_state_lowbat_serve}
  508. /* IRQ */ static bool seqirq_state_lowbat_serve( void * arg )
  509. {
  510. sData_t * pData = (sData_t*)(arg);
  511. #if LED_OKBAT_FLARE_ENABLE == 0
  512. if( ! pData->state.bLowBatterySignal )
  513. {
  514. // the program should not reach this point if works correctly
  515. return false; // stay in this routine
  516. }
  517. #endif
  518. if( ! pData->state.bSignalStage )
  519. {
  520. #if LED_OKBAT_FLARE_ENABLE == 0
  521. pData->counters.gp_timer_counter = 0;
  522. pData->counters.gp_timer_maximum = LED_LOWBAT_FLARE_TIME;
  523. pData->state.bSignalStage = true;
  524. ledRed( true ); // Turn RED LED ON
  525. #else
  526. if( pData->state.bLowBatterySignal )
  527. {
  528. pData->counters.gp_timer_counter = 0;
  529. pData->counters.gp_timer_maximum = LED_LOWBAT_FLARE_TIME;
  530. pData->state.bSignalStage = true;
  531. #if LED_AUTOMATALARM_COMBINED
  532. ledRed( !pData->state.bAutomatAlarm ); // Turn RED LED ON
  533. #else
  534. ledRed( true ); // Turn RED LED ON
  535. #endif
  536. }
  537. else
  538. {
  539. pData->counters.gp_timer_counter = 0;
  540. #if LED_AUTOMATALARM_COMBINED
  541. pData->counters.gp_timer_maximum = ((pData->state.bAutomatAlarm)?3:1)*LED_OKBAT_FLARE_TIME;
  542. #else
  543. pData->counters.gp_timer_maximum = LED_OKBAT_FLARE_TIME;
  544. #endif
  545. pData->state.bSignalStage = true;
  546. #if LED_AUTOMATALARM_COMBINED
  547. ledRed( false );
  548. #endif
  549. ledGreen( true ); // Turn GREEN LED ON
  550. }
  551. #endif
  552. }
  553. else
  554. {
  555. #if LED_OKBAT_FLARE_ENABLE == 0
  556. pData->counters.gp_timer_counter = 0;
  557. pData->counters.gp_timer_maximum = LED_LOWBAT_FLARE_INTERVAL;
  558. pData->state.bSignalStage = false;
  559. ledRed( false ); // Turn RED LED OFF, and wait for next flash
  560. #else
  561. if( pData->state.bLowBatterySignal )
  562. {
  563. pData->counters.gp_timer_counter = 0;
  564. pData->counters.gp_timer_maximum = LED_LOWBAT_FLARE_INTERVAL;
  565. pData->state.bSignalStage = false;
  566. #if LED_AUTOMATALARM_COMBINED
  567. ledRed( pData->state.bAutomatAlarm ); // Turn RED LED OFF, and wait for next flash
  568. #else
  569. ledRed( false ); // Turn RED LED OFF, and wait for next flash
  570. #endif
  571. }
  572. else
  573. {
  574. pData->counters.gp_timer_counter = 0;
  575. pData->counters.gp_timer_maximum = LED_OKBAT_FLARE_INTERVAL;
  576. pData->state.bSignalStage = false;
  577. #if LED_AUTOMATALARM_COMBINED
  578. ledRed( pData->state.bAutomatAlarm );
  579. #endif
  580. ledGreen( false ); // Turn GREEN LED OFF, and wait for next flash
  581. }
  582. #endif
  583. }
  584. return true; // let the next routine to be called
  585. }
  586. #endif
  587. //------------------------------------------------------------------------------
  588. // {seqirq_state_timer_nextstate}
  589. /* IRQ */ static bool seqirq_state_timer_nextstate( void * arg )
  590. {
  591. sData_t * pData = (sData_t*)(arg);
  592. if( pData->counters.gp_timer_counter < pData->counters.gp_timer_maximum )
  593. {
  594. pData->counters.gp_timer_counter++;
  595. return false;
  596. }
  597. // Useless:
  598. // rsa_sequence_iskip_routine( &rseq_timer ); // next timer routine
  599. // It is enough to return 'true'
  600. return true;
  601. }
  602. //------------------------------------------------------------------------------
  603. #if 0 // useless
  604. // {seqirq_state_timer_prevstate}
  605. /* IRQ */ static bool seqirq_state_timer_prevstate( void * arg )
  606. {
  607. sData_t * pData = (sData_t*)(arg);
  608. if( pData->counters.gp_timer_counter < pData->counters.gp_timer_maximum )
  609. {
  610. pData->counters.gp_timer_counter++;
  611. return false;
  612. }
  613. rsa_sequence_iback_routine( &rseq_timer ); // prev timer routine
  614. return false; // need to return 'false' to avoid calling next routine
  615. }
  616. #endif