| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- //-----------------------------------------------------------------------------
- //
- // (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
- //
- // This file contains confidential and proprietary information
- // of Xilinx, Inc. and is protected under U.S. and
- // international copyright and other intellectual property
- // laws.
- //
- // DISCLAIMER
- // This disclaimer is not a license and does not grant any
- // rights to the materials distributed herewith. Except as
- // otherwise provided in a valid license issued to you by
- // Xilinx, and to the maximum extent permitted by applicable
- // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
- // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
- // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
- // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
- // (2) Xilinx shall not be liable (whether in contract or tort,
- // including negligence, or under any other theory of
- // liability) for any loss or damage of any kind or nature
- // related to, arising under or in connection with these
- // materials, including for any direct, or any indirect,
- // special, incidental, or consequential loss or damage
- // (including loss of data, profits, goodwill, or any type of
- // loss or damage suffered as a result of any action brought
- // by a third party) even if such damage or loss was
- // reasonably foreseeable or Xilinx had been advised of the
- // possibility of the same.
- //
- // CRITICAL APPLICATIONS
- // Xilinx products are not designed or intended to be fail-
- // safe, or for use in any application requiring fail-safe
- // performance, such as life-support or safety devices or
- // systems, Class III medical devices, nuclear facilities,
- // applications related to the deployment of airbags, or any
- // other applications that could lead to death, personal
- // injury, or severe property or environmental damage
- // (individually and collectively, "Critical
- // Applications"). Customer assumes the sole risk and
- // liability of any use of Xilinx products in Critical
- // Applications, subject only to applicable laws and
- // regulations governing limitations on product liability.
- //
- // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
- // PART OF THIS FILE AT ALL TIMES.
- //
- //-----------------------------------------------------------------------------
- // Project : Series-7 Integrated Block for PCI Express
- // File : PIO_EP_MEM_ACCESS.v
- // Version : 3.3
- //--
- //-- Description: Endpoint Memory Access Unit. This module provides access functions
- //-- to the Endpoint memory aperture.
- //--
- //-- Read Access: Module returns data for the specifed address and
- //-- byte enables selected.
- //--
- //-- Write Access: Module accepts data, byte enables and updates
- //-- data when write enable is asserted. Modules signals write busy
- //-- when data write is in progress.
- //--
- //--------------------------------------------------------------------------------
- `timescale 1ps/1ps
- (* DowngradeIPIdentifiedWarnings = "yes" *)
- module PIO_EP_MEM_ACCESS #(
- parameter TCQ = 1
- ) (
- clk,
- rst_n,
- // Read Access
- rd_addr, // I [10:0] Read Address
- rd_be, // I [3:0] Read Byte Enable
- rd_data, // O [31:0] Read Data
- // Write Access
- wr_addr, // I [10:0] Write Address
- wr_be, // I [7:0] Write Byte Enable
- wr_data, // I [31:0] Write Data
- wr_en, // I Write Enable
- wr_busy // O Write Controller Busy
- );
- input clk;
- input rst_n;
- // Read Port
- input [10:0] rd_addr;
- input [3:0] rd_be;
- output [31:0] rd_data;
- // Write Port
- input [10:0] wr_addr;
- input [7:0] wr_be;
- input [31:0] wr_data;
- input wr_en;
- output wr_busy;
- localparam PIO_MEM_ACCESS_WR_RST = 3'b000;
- localparam PIO_MEM_ACCESS_WR_WAIT = 3'b001;
- localparam PIO_MEM_ACCESS_WR_READ = 3'b010;
- localparam PIO_MEM_ACCESS_WR_WRITE = 3'b100;
- wire [31:0] rd_data;
- reg [31:0] rd_data_raw_o;
- wire [31:0] rd_data0_o, rd_data1_o, rd_data2_o, rd_data3_o;
- wire rd_data0_en, rd_data1_en, rd_data2_en, rd_data3_en;
- wire wr_busy;
- reg write_en;
- reg [31:0] post_wr_data;
- reg [31:0] w_pre_wr_data;
- reg [2:0] wr_mem_state;
- reg [31:0] pre_wr_data;
- wire [31:0] w_pre_wr_data0;
- wire [31:0] w_pre_wr_data1;
- wire [31:0] w_pre_wr_data2;
- wire [31:0] w_pre_wr_data3;
- wire [7:0] w_pre_wr_data_b0;
- wire [7:0] w_pre_wr_data_b1;
- wire [7:0] w_pre_wr_data_b2;
- wire [7:0] w_pre_wr_data_b3;
- wire [7:0] w_wr_data_b0;
- wire [7:0] w_wr_data_b1;
- wire [7:0] w_wr_data_b2;
- wire [7:0] w_wr_data_b3;
- // Memory Write Process
- // Extract current data bytes. These need to be swizzled
- // BRAM storage format :
- // data[31:0] = { byte[3], byte[2], byte[1], byte[0] (lowest addr) }
- assign w_pre_wr_data_b3 = pre_wr_data[31:24];
- assign w_pre_wr_data_b2 = pre_wr_data[23:16];
- assign w_pre_wr_data_b1 = pre_wr_data[15:08];
- assign w_pre_wr_data_b0 = pre_wr_data[07:00];
- // Extract new data bytes from payload
- // TLP Payload format :
- // data[31:0] = { byte[0] (lowest addr), byte[2], byte[1], byte[3] }
- assign w_wr_data_b3 = wr_data[07:00];
- assign w_wr_data_b2 = wr_data[15:08];
- assign w_wr_data_b1 = wr_data[23:16];
- assign w_wr_data_b0 = wr_data[31:24];
- always @(posedge clk) begin
- if ( !rst_n )
- begin
- pre_wr_data <= #TCQ 32'b0;
- post_wr_data <= #TCQ 32'b0;
- pre_wr_data <= #TCQ 32'b0;
- write_en <= #TCQ 1'b0;
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_RST;
- end // if !rst_n
- else
- begin
- case ( wr_mem_state )
- PIO_MEM_ACCESS_WR_RST : begin
- if (wr_en)
- begin // read state
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_WAIT; //Pipelining happens in RAM's internal output reg.
- end
- else
- begin
- write_en <= #TCQ 1'b0;
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_RST;
- end
- end // PIO_MEM_ACCESS_WR_RST
- PIO_MEM_ACCESS_WR_WAIT : begin
- write_en <= #TCQ 1'b0;
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_READ ;
- end // PIO_MEM_ACCESS_WR_WAIT
- PIO_MEM_ACCESS_WR_READ : begin
- // Now save the selected BRAM B port data out
- pre_wr_data <= #TCQ w_pre_wr_data;
- write_en <= #TCQ 1'b0;
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_WRITE;
- end // PIO_MEM_ACCESS_WR_READ
- PIO_MEM_ACCESS_WR_WRITE : begin
- //Merge new enabled data and write target BlockRAM location
- post_wr_data <= #TCQ {{wr_be[3] ? w_wr_data_b3 : w_pre_wr_data_b3},
- {wr_be[2] ? w_wr_data_b2 : w_pre_wr_data_b2},
- {wr_be[1] ? w_wr_data_b1 : w_pre_wr_data_b1},
- {wr_be[0] ? w_wr_data_b0 : w_pre_wr_data_b0}};
- write_en <= #TCQ 1'b1;
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_RST;
- end // PIO_MEM_ACCESS_WR_WRITE
- default : begin
- // default case stmt
- wr_mem_state <= #TCQ PIO_MEM_ACCESS_WR_RST;
- end // default
- endcase // case (wr_mem_state)
- end // if rst_n
- end
- // Write controller busy
- assign wr_busy = wr_en | (wr_mem_state != PIO_MEM_ACCESS_WR_RST);
- // Select BlockRAM output based on higher 2 address bits
- always @*
- begin
- case ({wr_addr[10:9]}) // synthesis parallel_case full_case
- 2'b00 : w_pre_wr_data = w_pre_wr_data0;
- 2'b01 : w_pre_wr_data = w_pre_wr_data1;
- 2'b10 : w_pre_wr_data = w_pre_wr_data2;
- 2'b11 : w_pre_wr_data = w_pre_wr_data3;
- endcase
- end
- // Memory Read Controller
- assign rd_data0_en = {rd_addr[10:9] == 2'b00};
- assign rd_data1_en = {rd_addr[10:9] == 2'b01};
- assign rd_data2_en = {rd_addr[10:9] == 2'b10};
- assign rd_data3_en = {rd_addr[10:9] == 2'b11};
- always @(rd_addr or rd_data0_o or rd_data1_o or rd_data2_o or rd_data3_o)
- begin
- case ({rd_addr[10:9]}) // synthesis parallel_case full_case
- 2'b00 : rd_data_raw_o = rd_data0_o;
- 2'b01 : rd_data_raw_o = rd_data1_o;
- 2'b10 : rd_data_raw_o = rd_data2_o;
- 2'b11 : rd_data_raw_o = rd_data3_o;
- endcase
- end
- // Handle Read byte enables
- assign rd_data = {{rd_be[0] ? rd_data_raw_o[07:00] : 8'h0},
- {rd_be[1] ? rd_data_raw_o[15:08] : 8'h0},
- {rd_be[2] ? rd_data_raw_o[23:16] : 8'h0},
- {rd_be[3] ? rd_data_raw_o[31:24] : 8'h0}};
- EP_MEM EP_MEM_inst (
- .clk_i(clk),
- .a_rd_a_i_0(rd_addr[8:0]), // I [8:0]
- .a_rd_en_i_0(rd_data0_en), // I [1:0]
- .a_rd_d_o_0(rd_data0_o), // O [31:0]
- .b_wr_a_i_0(wr_addr[8:0]), // I [8:0]
- .b_wr_d_i_0(post_wr_data), // I [31:0]
- .b_wr_en_i_0({write_en & (wr_addr[10:9] == 2'b00)}), // I
- .b_rd_d_o_0(w_pre_wr_data0[31:0]), // O [31:0]
- .b_rd_en_i_0({wr_addr[10:9] == 2'b00}), // I
- .a_rd_a_i_1(rd_addr[8:0]), // I [8:0]
- .a_rd_en_i_1(rd_data1_en), // I [1:0]
- .a_rd_d_o_1(rd_data1_o), // O [31:0]
- .b_wr_a_i_1(wr_addr[8:0]), // [8:0]
- .b_wr_d_i_1(post_wr_data), // [31:0]
- .b_wr_en_i_1({write_en & (wr_addr[10:9] == 2'b01)}), // I
- .b_rd_d_o_1(w_pre_wr_data1[31:0]), // [31:0]
- .b_rd_en_i_1({wr_addr[10:9] == 2'b01}), // I
- .a_rd_a_i_2(rd_addr[8:0]), // I [8:0]
- .a_rd_en_i_2(rd_data2_en), // I [1:0]
- .a_rd_d_o_2(rd_data2_o), // O [31:0]
- .b_wr_a_i_2(wr_addr[8:0]), // I [8:0]
- .b_wr_d_i_2(post_wr_data), // I [31:0]
- .b_wr_en_i_2({write_en & (wr_addr[10:9] == 2'b10)}), // I
- .b_rd_d_o_2(w_pre_wr_data2[31:0]), // I [31:0]
- .b_rd_en_i_2({wr_addr[10:9] == 2'b10}), // I
- .a_rd_a_i_3(rd_addr[8:0]), // [8:0]
- .a_rd_en_i_3(rd_data3_en), // [1:0]
- .a_rd_d_o_3(rd_data3_o), // O [31:0]
- .b_wr_a_i_3(wr_addr[8:0]), // I [8:0]
- .b_wr_d_i_3(post_wr_data), // I [31:0]
- .b_wr_en_i_3({write_en & (wr_addr[10:9] == 2'b11)}), // I
- .b_rd_d_o_3(w_pre_wr_data3[31:0]), // I [31:0]
- .b_rd_en_i_3({wr_addr[10:9] == 2'b11}) // I
- );
- // synthesis translate_off
- reg [8*20:1] state_ascii;
- always @(wr_mem_state)
- begin
- case (wr_mem_state)
- PIO_MEM_ACCESS_WR_RST : state_ascii <= #TCQ "PIO_MEM_WR_RST";
- PIO_MEM_ACCESS_WR_WAIT : state_ascii <= #TCQ "PIO_MEM_WR_WAIT";
- PIO_MEM_ACCESS_WR_READ : state_ascii <= #TCQ "PIO_MEM_WR_READ";
- PIO_MEM_ACCESS_WR_WRITE : state_ascii <= #TCQ "PIO_MEM_WR_WRITE";
- default : state_ascii <= #TCQ "PIO MEM STATE ERR";
- endcase
- end
- // synthesis translate_on
- endmodule
|