DmaDriv.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294
  1. //This is a simple dma driver for a Xilinx AXI DMA engine. It is used to transfer data between memory and a peripheral device. The driver is used in the following way:
  2. //
  3. #include <linux/init.h>
  4. #include <linux/module.h>
  5. #include <linux/kernel.h>
  6. #include <linux/fs.h>
  7. #include <linux/uaccess.h>
  8. #include <linux/unistd.h>
  9. #include <linux/pci.h>
  10. #include <linux/mm_types.h>
  11. #include <asm-generic/errno.h>
  12. #include <linux/cdev.h>
  13. #include <linux/types.h>
  14. #include <linux/device.h>
  15. #include <linux/slab.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/io.h>
  18. MODULE_LICENSE("GPL");
  19. MODULE_AUTHOR("Anatoliy Chigirinskiy");
  20. MODULE_DESCRIPTION("A simple dma driver for a Xilinx AXI DMA engine");
  21. MODULE_VERSION("0.1");
  22. static dma_addr_t dma_handle = 0;
  23. static int major_number;
  24. static void *dma_buffer = NULL;
  25. static size_t dma_size = 0;
  26. static resource_size_t dma_start, dma_len, pci_start, pci_len;
  27. static struct class *pci_class = NULL;
  28. static struct pci_device_data pci_dev_data;
  29. struct pci_device_data {
  30. struct device *pcidev;
  31. struct cdev cdev;
  32. };
  33. static struct pci_device_id pci_ids[] = {
  34. {PCI_DEVICE(0x10EE, 0x7024)},
  35. {PCI_DEVICE(0x10EE, 0x7022)},
  36. {PCI_DEVICE(0x10EE, 0x7014)},
  37. {PCI_DEVICE(0x10EE, 0x7012)},
  38. {0,}
  39. };
  40. MODULE_DEVICE_TABLE(pci, pci_ids);
  41. int read_device_config(struct pci_dev *pdev) {
  42. u16 vendor_id;
  43. u16 device_id;
  44. u8 revision;
  45. u8 class;
  46. u8 subclass;
  47. u8 prog_if;
  48. u8 header_type;
  49. u8 irq_line;
  50. u8 irq_pin;
  51. u32 bar0;
  52. u32 bar1;
  53. u32 bar2;
  54. pci_read_config_word(pdev, PCI_VENDOR_ID, &vendor_id);
  55. pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
  56. pci_read_config_byte(pdev, PCI_REVISION_ID, &revision);
  57. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &class);
  58. pci_read_config_byte(pdev, PCI_CLASS_PROG, &prog_if);
  59. pci_read_config_byte(pdev, PCI_HEADER_TYPE, &header_type);
  60. pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &irq_line);
  61. pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &irq_pin);
  62. pci_read_config_dword(pdev, PCI_BASE_ADDRESS_0, &bar0);
  63. pci_read_config_dword(pdev, PCI_BASE_ADDRESS_1, &bar1);
  64. pci_read_config_dword(pdev, PCI_BASE_ADDRESS_2, &bar2);
  65. printk(KERN_INFO
  66. "Vendor ID: 0x%04x\n", vendor_id);
  67. printk(KERN_INFO
  68. "Device ID: 0x%04x\n", device_id);
  69. printk(KERN_INFO
  70. "Revision: 0x%02x\n", revision);
  71. printk(KERN_INFO
  72. "Class: 0x%02x\n", class);
  73. printk(KERN_INFO
  74. "Prog IF: 0x%02x\n", prog_if);
  75. printk(KERN_INFO
  76. "Header type: 0x%02x\n", header_type);
  77. printk(KERN_INFO
  78. "IRQ line: 0x%02x\n", irq_line);
  79. printk(KERN_INFO
  80. "IRQ pin: 0x%02x\n", irq_pin);
  81. printk(KERN_INFO
  82. "BAR0: 0x%08x\n", bar0);
  83. printk(KERN_INFO
  84. "BAR1: 0x%08x\n", bar1);
  85. printk(KERN_INFO
  86. "BAR2: 0x%08x\n", bar2);
  87. return 0;
  88. }
  89. static ssize_t dma_read(struct file *file, char __user
  90. *buf,
  91. size_t count, loff_t
  92. *ppos) {
  93. return 0;
  94. }
  95. static ssize_t dma_write(struct file *file, const char __user
  96. *buf,
  97. size_t count, loff_t
  98. *ppos) {
  99. return 0;
  100. }
  101. static int dma_open(struct inode *inode, struct file *file) {
  102. printk(KERN_INFO
  103. "dma_open\n");
  104. return 0;
  105. }
  106. static int dma_release(struct inode *inode, struct file *file) {
  107. printk(KERN_INFO
  108. "dma_release\n");
  109. return 0;
  110. }
  111. static int dma_mmap(struct file *file, struct vm_area_struct *vma) {
  112. uint64_t off = vma->vm_pgoff = (pci_start) >>PAGE_SHIFT;
  113. printk("Offset in mmap 0x%lu\n",off);
  114. uint64_t vsize = vma->vm_end - vma->vm_start;
  115. printk("Virt size is 0x%lu\n",vsize);
  116. uint64_t psize = pci_len - off;
  117. printk("Phys size is 0x%lu\n",psize);
  118. int rv;
  119. if (vsize > psize)
  120. return -EINVAL;
  121. vma->vm_page_prot = pgprot_noncached(vma-> vm_page_prot);
  122. printk("VMA page protection set\n");
  123. rv = io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, vsize, vma->vm_page_prot);
  124. if (rv)
  125. return -EAGAIN;
  126. printk("Physical memory mapped to user space\n");
  127. return 0;
  128. }
  129. static ssize_t dma_ioctl(struct file *file, unsigned int cmd, unsigned long arg) {
  130. return 0;
  131. }
  132. static struct file_operations dma_fops = {
  133. .owner = THIS_MODULE,
  134. .read = dma_read,
  135. .write = dma_write,
  136. .mmap = dma_mmap,
  137. .open = dma_open,
  138. .release = dma_release
  139. };
  140. int create_char_dev(struct pci_dev *pdev) {
  141. int rc;
  142. dev_t dev;
  143. rc = alloc_chrdev_region(&dev, 0, 1, "MyDmaModule");
  144. if (rc) {
  145. printk(KERN_ERR
  146. "alloc_chrdev_region failed\n");
  147. return rc;
  148. }
  149. major_number = MAJOR(dev);
  150. printk(KERN_INFO
  151. "major_number=%d\n", major_number);
  152. pci_class = class_create(THIS_MODULE,"MyDmaModule");
  153. if (IS_ERR(pci_class)) {
  154. printk(KERN_ERR
  155. "class_create failed\n");
  156. return PTR_ERR(pci_class);
  157. }
  158. cdev_init(&pci_dev_data.cdev, &dma_fops);
  159. pci_dev_data.pcidev = device_create(pci_class, NULL, MKDEV(major_number, 0), NULL, "MyDmaModule");
  160. pci_dev_data.cdev.owner = THIS_MODULE;
  161. rc = cdev_add(&pci_dev_data.cdev, MKDEV(major_number, 0), 1);
  162. if (rc) {
  163. printk(KERN_ERR
  164. "cdev_add failed\n");
  165. return rc;
  166. }
  167. printk(KERN_INFO
  168. "Device created\n");
  169. return 0;
  170. }
  171. int remove_char_dev(struct pci_dev *pdev) {
  172. device_destroy(pci_class, MKDEV(major_number, 0));
  173. cdev_del(&pci_dev_data.cdev);
  174. class_destroy(pci_class);
  175. unregister_chrdev_region(MKDEV(major_number, 0), 1);
  176. return 0;
  177. }
  178. static int dma_probe(struct pci_dev *pdev, const struct pci_device_id *id) {
  179. int rc;
  180. size_t dma_size;
  181. struct device *dev = &pdev->dev;
  182. if (read_device_config(pdev)) {
  183. dev_err(dev, "read_device_config failed\n");
  184. return -ENODEV;
  185. }
  186. rc = pci_enable_device(pdev);
  187. if (rc) {
  188. dev_err(dev, "pci_enable_device failed\n");
  189. return rc;
  190. }
  191. rc = pci_request_regions(pdev, "dma");
  192. if (rc) {
  193. dev_err(dev, "pci_request_regions failed\n");
  194. pci_disable_device(pdev);
  195. }
  196. pci_start = pci_resource_start(pdev, 0);
  197. pci_len = pci_resource_len(pdev, 0);
  198. create_char_dev(pdev);
  199. dma_buffer = dma_alloc_coherent(dev, PAGE_SIZE, &dma_handle, GFP_KERNEL);
  200. if (!dma_buffer) {
  201. dev_err(dev, "dma_alloc_coherent failed\n");
  202. rc = -ENOMEM;
  203. pci_request_regions(pdev, "dma");
  204. }
  205. pci_set_drvdata(pdev, &pci_dev_data);
  206. dma_size = PAGE_SIZE;
  207. dev_info(dev, "dma_buffer=%p, dma_handle=0x%llx, dma_size=%zu\n", dma_buffer, (unsigned long long) dma_handle,
  208. dma_size);
  209. // Test DMA transfer
  210. memset(dma_buffer, 0x55, dma_size);
  211. printk(KERN_INFO
  212. "dma_buffer[0]=0x%02x\n", ((unsigned char *) dma_buffer)[0]);
  213. return 0;
  214. }
  215. static void dma_remove(struct pci_dev *pdev) {
  216. struct device *dev = &pdev->dev;
  217. remove_char_dev(pdev);
  218. dma_free_coherent(dev, PAGE_SIZE, dma_buffer, dma_handle);
  219. pci_release_regions(pdev);
  220. pci_disable_device(pdev);
  221. }
  222. static struct pci_driver dma_driver = {
  223. .name = "MyDMADriver",
  224. .id_table = pci_ids,
  225. .probe = dma_probe,
  226. .remove = dma_remove,
  227. };
  228. static int __init
  229. dma_init(void) {
  230. int rc;
  231. rc = pci_register_driver(&dma_driver);
  232. if (rc) {
  233. printk(KERN_ERR
  234. "pci_register_driver failed\n");
  235. return rc;
  236. }
  237. printk(KERN_INFO
  238. "dma_init\n");
  239. return 0;
  240. }
  241. static void __exit
  242. dma_exit(void) {
  243. pci_unregister_driver(&dma_driver);
  244. printk(KERN_INFO
  245. "dma_exit\n");
  246. }
  247. //module init and exit
  248. module_init(dma_init);
  249. module_exit(dma_exit);