lmx2594.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. #include "lmx2594.h"
  2. #include <math.h>
  3. const uint32_t lmx2594_rst[] = {
  4. 0x002516,
  5. 0x002514
  6. };
  7. uint32_t lmx2594regs[LMX_COUNT] = {
  8. 0x700000,
  9. 0x6F0000,
  10. 0x6E0000,
  11. 0x6D0000,
  12. 0x6C0000,
  13. 0x6B0000,
  14. 0x6A0000,
  15. 0x690021,
  16. 0x680000,
  17. 0x670000,
  18. 0x660000,
  19. 0x650011,
  20. 0x640000,
  21. 0x630000,
  22. 0x620000,
  23. 0x610888,
  24. 0x600000,
  25. 0x5F0000,
  26. 0x5E0000,
  27. 0x5D0000,
  28. 0x5C0000,
  29. 0x5B0000,
  30. 0x5A0000,
  31. 0x590000,
  32. 0x580000,
  33. 0x570000,
  34. 0x560000,
  35. 0x550000,
  36. 0x540000,
  37. 0x530000,
  38. 0x520000,
  39. 0x510000,
  40. 0x500000,
  41. 0x4F0000,
  42. 0x4E0105,
  43. 0x4D0000,
  44. 0x4C000C,
  45. 0x4B0C40,
  46. 0x4A0000,
  47. 0x49003F,
  48. 0x480001,
  49. 0x470081,
  50. 0x46C350,
  51. 0x450000,
  52. 0x4403E8,
  53. 0x430000,
  54. 0x4201F4,
  55. 0x410000,
  56. 0x401388,
  57. 0x3F0000,
  58. 0x3E0322,
  59. 0x3D00A8,
  60. 0x3C03E8,
  61. 0x3B0001,
  62. 0x3A9001,
  63. 0x390020,
  64. 0x380000,
  65. 0x370000,
  66. 0x360000,
  67. 0x350000,
  68. 0x340820,
  69. 0x330080,
  70. 0x320000,
  71. 0x314180,
  72. 0x300300,
  73. 0x2F0300,
  74. 0x2E07FD,
  75. 0x2DC8DF,
  76. 0x2C1F20,
  77. 0x2B0000,
  78. 0x2A0000,
  79. 0x290000,
  80. 0x280000,
  81. 0x2703E8,
  82. 0x260000,
  83. 0x250104,
  84. 0x240032,
  85. 0x230004,
  86. 0x220000,
  87. 0x211E21,
  88. 0x200393,
  89. 0x1F43EC,
  90. 0x1E318C,
  91. 0x1D318C,
  92. 0x1C0488,
  93. 0x1B0002,
  94. 0x1A0DB0,
  95. 0x190C2B,
  96. 0x18071A,
  97. 0x17007C,
  98. 0x160001,
  99. 0x150401,
  100. 0x14D848,
  101. 0x1327B7,
  102. 0x120064,
  103. 0x110130,
  104. 0x100080,
  105. 0x0F064F,
  106. 0x0E1E40,
  107. 0x0D4000,
  108. 0x0C5001,
  109. 0x0B0018,
  110. 0x0A10D8,
  111. 0x090604,
  112. 0x082000,
  113. 0x0740B2,
  114. 0x06C802,
  115. 0x0500C8,
  116. 0x041443,
  117. 0x030642,
  118. 0x020500,
  119. 0x01080B,
  120. 0x00251C
  121. };
  122. uint32_t lmx_change_freq_regs[12];
  123. struct vco_params calculate_vco_params (double lmx_freq, double f_pd) {
  124. struct vco_params params;
  125. if (lmx_freq < 7500e6) {
  126. params.f_vco = 2 * lmx_freq;
  127. params.chan_div = 2;
  128. params.ch_div_reg = 0;
  129. double vco_div = 7.5e9 / lmx_freq;
  130. if (params.f_vco < 7.5e9) {
  131. if (vco_div > 2 && vco_div <= 4) {
  132. params.chan_div = 4;
  133. params.f_vco = lmx_freq * params.chan_div;
  134. }
  135. else if (vco_div > 4 && vco_div <= 6) {
  136. params.chan_div = 6;
  137. params.f_vco = lmx_freq * params.chan_div;
  138. }
  139. else if (vco_div > 6 && vco_div <= 8) {
  140. params.chan_div = 8;
  141. params.f_vco = lmx_freq * params.chan_div;
  142. }
  143. else if (vco_div > 8 && vco_div <= 12) {
  144. params.chan_div = 12;
  145. params.f_vco = lmx_freq * params.chan_div;
  146. }
  147. else if (vco_div > 12 && vco_div <= 16) {
  148. params.chan_div = 16;
  149. params.f_vco = lmx_freq * params.chan_div;
  150. }
  151. else if (vco_div > 16 && vco_div <= 24) {
  152. params.chan_div = 24;
  153. params.f_vco = lmx_freq * params.chan_div;
  154. }
  155. else if (vco_div > 24 && vco_div <= 32) {
  156. params.chan_div = 32;
  157. params.f_vco = lmx_freq * params.chan_div;
  158. }
  159. else if (vco_div > 32 && vco_div <= 48) {
  160. params.chan_div = 48;
  161. params.f_vco = lmx_freq * params.chan_div;
  162. }
  163. else if (vco_div > 48 && vco_div <= 64) {
  164. params.chan_div = 64;
  165. params.f_vco = lmx_freq * params.chan_div;
  166. }
  167. else if (vco_div > 64 && vco_div <= 96) {
  168. params.chan_div = 96;
  169. params.f_vco = lmx_freq * params.chan_div;
  170. }
  171. else if (vco_div > 96 && vco_div <= 128) {
  172. params.chan_div = 128;
  173. params.f_vco = lmx_freq * params.chan_div;
  174. }
  175. else if (vco_div > 128 && vco_div <= 192) {
  176. params.chan_div = 192;
  177. params.f_vco = lmx_freq * params.chan_div;
  178. }
  179. else if (vco_div > 192 && vco_div <= 256) {
  180. params.chan_div = 256;
  181. params.f_vco = lmx_freq * params.chan_div;
  182. }
  183. else if (vco_div > 256 && vco_div <= 384) {
  184. params.chan_div = 384;
  185. params.f_vco = lmx_freq * params.chan_div;
  186. }
  187. else if (vco_div > 384 && vco_div <= 512) {
  188. params.chan_div = 512;
  189. params.f_vco = lmx_freq * params.chan_div;
  190. }
  191. else if (vco_div > 512 && vco_div <= 768) {
  192. params.chan_div = 768;
  193. params.f_vco = lmx_freq * params.chan_div;
  194. }
  195. switch(params.chan_div) {
  196. case 2:
  197. params.ch_div_reg = 0;
  198. break;
  199. case 4:
  200. params.ch_div_reg = 1;
  201. break;
  202. case 6:
  203. params.ch_div_reg = 2;
  204. break;
  205. case 8:
  206. params.ch_div_reg = 3;
  207. break;
  208. case 12:
  209. params.ch_div_reg = 4;
  210. break;
  211. case 16:
  212. params.ch_div_reg = 5;
  213. break;
  214. case 24:
  215. params.ch_div_reg = 6;
  216. break;
  217. case 32:
  218. params.ch_div_reg = 7;
  219. break;
  220. case 48:
  221. params.ch_div_reg = 8;
  222. break;
  223. case 64:
  224. params.ch_div_reg = 9;
  225. break;
  226. case 96:
  227. params.ch_div_reg = 10;
  228. break;
  229. case 128:
  230. params.ch_div_reg = 11;
  231. break;
  232. case 192:
  233. params.ch_div_reg = 12;
  234. break;
  235. case 256:
  236. params.ch_div_reg = 13;
  237. break;
  238. case 384:
  239. params.ch_div_reg = 14;
  240. break;
  241. case 512:
  242. params.ch_div_reg = 15;
  243. break;
  244. case 768:
  245. params.ch_div_reg = 16;
  246. break;
  247. }
  248. }
  249. else {
  250. params.ch_div_reg = 0;
  251. params.f_vco = lmx_freq*2;
  252. }
  253. }
  254. else {
  255. params.f_vco = lmx_freq;
  256. }
  257. if (params.f_vco >= 7500e6 && params.f_vco <= 8600e6) {
  258. params.vco_core = 1;
  259. params.f_coremin = 7500e6;
  260. params.f_coremax = 8600e6;
  261. params.c_core_min = 164;
  262. params.c_core_max = 12;
  263. params.a_core_min = 299;
  264. params.a_core_max = 240;
  265. }
  266. else if (params.f_vco > 8600e6 && params.f_vco < 9800e6) {
  267. params.vco_core = 2;
  268. params.f_coremin = 8600e6;
  269. params.f_coremax = 9800e6;
  270. params.c_core_min = 165;
  271. params.c_core_max = 16;
  272. params.a_core_min = 356;
  273. params.a_core_max = 247;
  274. }
  275. else if (params.f_vco >= 9800e6 && params.f_vco <= 10800e6) {
  276. params.vco_core = 3;
  277. params.f_coremin = 9800e6;
  278. params.f_coremax = 10800e6;
  279. params.c_core_min = 158;
  280. params.c_core_max = 19;
  281. params.a_core_min = 324;
  282. params.a_core_max = 224;
  283. }
  284. else if (params.f_vco > 10800e6 && params.f_vco <= 12000e6) {
  285. params.vco_core = 4;
  286. params.f_coremin = 10800e6;
  287. params.f_coremax = 12000e6;
  288. params.c_core_min = 140;
  289. params.c_core_max = 0;
  290. params.a_core_min = 383;
  291. params.a_core_max = 244;
  292. }
  293. else if (params.f_vco > 12000e6 && params.f_vco <= 12900e6) {
  294. params.vco_core = 5;
  295. params.f_coremin = 12000e6;
  296. params.f_coremax = 12900e6;
  297. params.c_core_min = 183;
  298. params.c_core_max = 36;
  299. params.a_core_min = 205;
  300. params.a_core_max = 146;
  301. }
  302. else if (params.f_vco > 12900e6 && params.f_vco <= 13900e6) {
  303. params.vco_core = 6;
  304. params.f_coremin = 12900e6;
  305. params.f_coremax = 13900e6;
  306. params.c_core_min = 155;
  307. params.c_core_max = 6;
  308. params.a_core_min = 242;
  309. params.a_core_max = 163;
  310. }
  311. else if (params.f_vco > 13900e6 && params.f_vco <= 15000e6) {
  312. params.vco_core = 7;
  313. params.f_coremin = 13900e6;
  314. params.f_coremax = 15000e6;
  315. params.c_core_min = 175;
  316. params.c_core_max = 19;
  317. params.a_core_min = 323;
  318. params.a_core_max = 244;
  319. }
  320. if (params.f_vco >=11900e6 && params.f_vco <=12100e6) {
  321. params.vco_daciset_strt = 300;
  322. params.vco_core = 4;
  323. params.vco_cap_ctrl_strt = 1;
  324. }
  325. params.vco_cap_ctrl_strt = round(params.c_core_min - (params.c_core_min - params.c_core_max) * (params.f_vco - params.f_coremin) / (params.f_coremax - params.f_coremin));
  326. params.vco_daciset_strt = round(params.a_core_min + (params.a_core_min - params.a_core_max) * (params.f_vco - params.f_coremin) / (params.f_coremax - params.f_coremin));
  327. if (params.f_vco <= 12500e6) {
  328. params.pfd_dly_sel = 1;
  329. }
  330. else if (params.f_vco > 12500e6) {
  331. params.pfd_dly_sel = 2;
  332. }
  333. if (f_pd <= 100e6) {
  334. params.fcal_hpfd_adj = ENUM_LMX2594_R0_FCAL_HPFD_ADJ_LESS100MHZ;
  335. }
  336. else if (f_pd > 100e6 && f_pd <= 150e6) {
  337. params.fcal_hpfd_adj = ENUM_LMX2594_R0_FCAL_HPFD_ADJ_100_150MHZ;
  338. }
  339. else if (f_pd > 150e6 && f_pd <= 200e6) {
  340. params.fcal_hpfd_adj = ENUM_LMX2594_R0_FCAL_HPFD_ADJ_150_200MHZ;
  341. }
  342. else if (f_pd > 200e6) {
  343. params.fcal_hpfd_adj = ENUM_LMX2594_R0_FCAL_HPFD_ADJ_MORE200MHZ;
  344. }
  345. // SET the CAL_CLK_DIV value
  346. if (f_pd <= 200e6 ) {
  347. params.cal_clk_div = ENUM_LMX2594_R1_CAL_CLK_DIV1;
  348. }
  349. else if (f_pd > 200e6 && f_pd <= 400e6) {
  350. params.cal_clk_div = ENUM_LMX2594_R1_CAL_CLK_DIV2;
  351. }
  352. else if (f_pd > 400e6 && f_pd < 800e6) {
  353. params.cal_clk_div = ENUM_LMX2594_R1_CAL_CLK_DIV4;
  354. }
  355. // Calculate the ACAL_CMP_DLY
  356. double fsm_clk = f_pd/(pow(2,params.cal_clk_div));
  357. params.acal_cmp_dly = (uint8_t) ((uint64_t)round((fsm_clk)/10e6));
  358. // Calculate the N_div
  359. params.N_div = round(params.f_vco/f_pd);
  360. params.N = (uint32_t) params.N_div;
  361. if (params.f_vco <= 12500e6) {
  362. if (params.N < 28) {
  363. params.N = 28;
  364. }
  365. }
  366. else if (params.f_vco > 12500e6) {
  367. if (params.N < 32) {
  368. params.N = 32;
  369. }
  370. }
  371. return params;
  372. }
  373. void set_vco_params (struct vco_params *params) {
  374. // Set the VCO_CORE
  375. lmx2594regs[112 - VCO_SEL] = lmx2594regs[112 - VCO_SEL] & (~BITM_LMX2594_R20_VCO_SEL);
  376. lmx2594regs[112 - VCO_SEL] = lmx2594regs[112 - VCO_SEL] | (params->vco_core << BITP_LMX2594_R20_VCO_SEL);
  377. // Set the VCO_CAP_CTRL_START
  378. lmx2594regs[112 - CAP_CTRL_START] = lmx2594regs[112 - CAP_CTRL_START] & (~BITM_LMX2594_R78_VCO_CAP_CTRL_START);
  379. lmx2594regs[112 - CAP_CTRL_START] = lmx2594regs[112 - CAP_CTRL_START] | (params->vco_cap_ctrl_strt << BITP_LMX2594_R78_VCO_CAP_CTRL_START);
  380. // Set the VCO_DACISET
  381. lmx2594regs[112 - VCO_DACISET] = lmx2594regs[112 - VCO_DACISET] & (~BITM_LMX2594_R17_VCO_DACISET);
  382. lmx2594regs[112 - VCO_DACISET] = lmx2594regs[112 - VCO_DACISET] | (params->vco_daciset_strt << BITP_LMX2594_R17_VCO_DACISET);
  383. // Set PFD_DLY_SEL
  384. lmx2594regs[112-PFD_DLY_SEL] = lmx2594regs[112-PFD_DLY_SEL] & (~BITM_LMX2594_R37_PFD_DLY_SEL);
  385. lmx2594regs[112-PFD_DLY_SEL] = lmx2594regs[112-PFD_DLY_SEL] | (params->pfd_dly_sel << BITP_LMX2594_R37_PFD_DLY_SEL);
  386. // Set the FCAL_HPFD_ADJ
  387. lmx2594regs[112-FCAL_ADDR] = lmx2594regs[112-FCAL_ADDR] & (~BITM_LMX2594_RO_FCAL_HPFD_ADJ);
  388. lmx2594regs[112-FCAL_ADDR] = lmx2594regs[112-FCAL_ADDR] | params->fcal_hpfd_adj;
  389. // SET the CAL_CLK_DIV value
  390. lmx2594regs[112-R1_ADDR] = lmx2594regs[112-R1_ADDR] & (~BITM_LMX2594_R1_CAL_CLK_DIV);
  391. lmx2594regs[112-R1_ADDR] = lmx2594regs[112-R1_ADDR] | params->cal_clk_div;
  392. // Set the ACAL_CMP_DLY value
  393. lmx2594regs[112-R4_ADDR] = lmx2594regs[112-R4_ADDR] & (~BITM_LMX2594_R4_ACAL_CMP_DLY);
  394. lmx2594regs[112-R4_ADDR] = lmx2594regs[112-R4_ADDR] | (params->acal_cmp_dly << BITP_LMX2594_R4_ACAL_CMP_DLY);
  395. // Set the N Value
  396. lmx2594regs[112-PLL_N_S] = lmx2594regs[112-PLL_N_S] & (~0xFFFF);
  397. lmx2594regs[112-PLL_N_S] = lmx2594regs[112-PLL_N_S] | (params->N >> 16);
  398. lmx2594regs[112-PLL_N_M] = lmx2594regs[112-PLL_N_M] & (~0xFFFF);
  399. lmx2594regs[112-PLL_N_M] = lmx2594regs[112-PLL_N_M] | (params->N & 0xFFFF);
  400. // Set the CHDIV value
  401. lmx2594regs[112-CHDIV] = lmx2594regs[112-CHDIV] & (~BITM_LMX2594_R75_CHDIV);
  402. lmx2594regs[112-CHDIV] = lmx2594regs[112-CHDIV] | (params->ch_div_reg << BITP_LMX2594_R75_CHDIV);
  403. if (params->chan_div > 2) {
  404. lmx2594regs[112-CHDIV_DIV2] = lmx2594regs[112-CHDIV_DIV2] | BITM_LMX2594_R31_CHDIV_DIV2;
  405. }
  406. else {
  407. lmx2594regs[112-CHDIV_DIV2] = lmx2594regs[112-CHDIV_DIV2] & (~BITM_LMX2594_R31_CHDIV_DIV2);
  408. }
  409. }
  410. void auto_cal(reg_addr_pci* pci_bar_1) {
  411. lmx2594regs[112-FCAL_ADDR] = lmx2594regs[112-FCAL_ADDR] & (~BITM_LMX2594_R0_FCAL);
  412. lmx2594regs[112-FCAL_ADDR] = lmx2594regs[112-FCAL_ADDR] | LMX2594_R0_FCAL_EN;
  413. /* Header for LMX 1MOSI */
  414. pci_bar_1->sbtmsg_addr = (ENUM_SPIMODE_1MOSI | (DeviceIdLmx2594 << SB_HEADER_1MOSI_DEVICE_ID_BITP) | (0x1 << SB_HEADER_1MOSI_WORD_NUM_BITP) | SB_HEADER_TERM_BIT_1);
  415. /* Data for LMX 1MOSI */
  416. pci_bar_1->sbtmsg_addr = lmx2594regs[112 - FCAL_ADDR];
  417. }
  418. void lmx2594_init(reg_addr_pci* pci_bar_1) {
  419. // Header for LMX Reset
  420. pci_bar_1->sbtmsg_addr = LMX2594_RST_HEADER;
  421. // Reset Data
  422. for (int m = 0; m < (sizeof(lmx2594_rst))/4; m++) {
  423. pci_bar_1->sbtmsg_addr = lmx2594_rst[m];
  424. }
  425. // Header for init data
  426. pci_bar_1->sbtmsg_addr = INIT_LMX2594_HEADER;
  427. // Init data
  428. for (int i = 0; i < LMX_COUNT; i++) {
  429. pci_bar_1->sbtmsg_addr = lmx2594regs[i];
  430. }
  431. }
  432. /*-------------------------LMX2594 Frequency Set-------------------------*/
  433. int lmx_freq_set_main_band_int_mode(double lmx_freq, double f_pd) {
  434. // Partial assist for the calibration
  435. struct vco_params params = calculate_vco_params(lmx_freq, f_pd);
  436. // Set the vco params
  437. set_vco_params(&params);
  438. // Clear the SEG1_EN bit
  439. lmx2594regs[112 - CHDIV_DIV2] = lmx2594regs[112 - CHDIV_DIV2] & (~BITM_LMX2594_R31_CHDIV_DIV2);
  440. // Set the OUTA_MUX to channel divider R45[12:11]; 0 - Channel divider, 1 - VCO;
  441. lmx2594regs[112 - OUTA_MUX] = lmx2594regs[112 - OUTA_MUX] | ENUM_LMX2594_R45_OUTA_MUX_VCO;
  442. // Program the FCAL_EN bit
  443. lmx2594regs[112 - FCAL_ADDR] = lmx2594regs[112 - FCAL_ADDR] & (~BITM_LMX2594_R0_FCAL);
  444. lmx2594regs[112 - FCAL_ADDR] = lmx2594regs[112 - FCAL_ADDR] | (LMX2594_R0_FCAL_EN);
  445. lmx_change_freq_regs[0] = lmx2594regs[112 - VCO_SEL];
  446. lmx_change_freq_regs[1] = lmx2594regs[112 - CAP_CTRL_START];
  447. lmx_change_freq_regs[2] = lmx2594regs[112 - VCO_DACISET];
  448. lmx_change_freq_regs[3] = lmx2594regs[112 - PFD_DLY_SEL];
  449. lmx_change_freq_regs[4] = lmx2594regs[112 - R4_ADDR];
  450. lmx_change_freq_regs[5] = lmx2594regs[112 - R1_ADDR];
  451. lmx_change_freq_regs[6] = lmx2594regs[112 - PLL_N_S];
  452. lmx_change_freq_regs[7] = lmx2594regs[112 - PLL_N_M];
  453. lmx_change_freq_regs[8] = lmx2594regs[112 - CHDIV];
  454. lmx_change_freq_regs[9] = lmx2594regs[112 - CHDIV_DIV2];
  455. lmx_change_freq_regs[10] = lmx2594regs[112 - OUTA_MUX];
  456. lmx_change_freq_regs[11] = lmx2594regs[112 - FCAL_ADDR];
  457. return 0;
  458. }
  459. int lmx_freq_set_out_of_band_int_mode(double lmx_freq, double f_pd) {
  460. // Partial assist for the calibration
  461. struct vco_params params = calculate_vco_params(lmx_freq, f_pd);
  462. // Set the vco params
  463. set_vco_params(&params);
  464. // Set the OUTA_MUX to channel divider R45[12:11]; 0 - Channel divider, 1 - VCO;
  465. lmx2594regs[112 - OUTA_MUX] = lmx2594regs[112 - OUTA_MUX] & (~BITM_LMX2594_R45_OUTA_MUX);
  466. lmx2594regs[112 - OUTA_MUX] = lmx2594regs[112 - OUTA_MUX] | ENUM_LMX2594_R45_OUTA_MUX_CH_DIV;
  467. // Program the FCAL_EN bit
  468. lmx2594regs[112 - FCAL_ADDR] = lmx2594regs[112 - FCAL_ADDR] & (~LMX2594_R0_FCAL_EN);
  469. lmx2594regs[112 - FCAL_ADDR] = lmx2594regs[112 - FCAL_ADDR] | (LMX2594_R0_FCAL_EN);
  470. lmx_change_freq_regs[0] = lmx2594regs[112 - VCO_SEL];
  471. lmx_change_freq_regs[1] = lmx2594regs[112 - CAP_CTRL_START];
  472. lmx_change_freq_regs[2] = lmx2594regs[112 - VCO_DACISET];
  473. lmx_change_freq_regs[3] = lmx2594regs[112 - PFD_DLY_SEL];
  474. lmx_change_freq_regs[4] = lmx2594regs[112 - R4_ADDR];
  475. lmx_change_freq_regs[5] = lmx2594regs[112 - R1_ADDR];
  476. lmx_change_freq_regs[6] = lmx2594regs[112 - PLL_N_S];
  477. lmx_change_freq_regs[7] = lmx2594regs[112 - PLL_N_M];
  478. lmx_change_freq_regs[8] = lmx2594regs[112 - CHDIV];
  479. lmx_change_freq_regs[9] = lmx2594regs[112 - CHDIV_DIV2];
  480. lmx_change_freq_regs[10] = lmx2594regs[112 - OUTA_MUX];
  481. lmx_change_freq_regs[11] = lmx2594regs[112 - FCAL_ADDR];
  482. return 0;
  483. }
  484. double lmx_get_freq(double freq) {
  485. if (freq < 100e3 || freq > 45e9) {
  486. printf("Frequency range is 100 kHz to 45 GHz\n");
  487. return -1;
  488. }
  489. if (freq >= 100e3 && freq <= 1000e6) {
  490. double f_max2870 = 4e9;
  491. double lmx_freq = f_max2870-freq; // 4 GHz - freq
  492. return lmx_freq;
  493. }
  494. else if (freq > 1000e6 && freq <= 15e9) {
  495. return freq;
  496. }
  497. else if (freq > 15e9 && freq <=27e9) {
  498. return freq / 2;
  499. }
  500. else if (freq > 27e9 && freq <= 45e9) {
  501. return freq / 4;
  502. }
  503. return 0;
  504. }
  505. int lmx_freq_set(reg_addr_pci* pci_bar_1, double lmx_freq,double f_pd) {
  506. // Set the 4 Mosi mode
  507. // if the frequency is in the main band - 7.5 GHz to 15 GHz
  508. if (lmx_freq >= 7.5e9 && lmx_freq <= 15e9) {
  509. lmx_freq_set_main_band_int_mode(lmx_freq, f_pd);
  510. }
  511. else if (lmx_freq < 7.5e9) {
  512. lmx_freq_set_out_of_band_int_mode(lmx_freq, f_pd);
  513. }
  514. return 0;
  515. }
  516. uint32_t lmx_ld_status(reg_addr_pci* pci_bar_1) {
  517. uint32_t read_value = pci_bar_1->sbtmsg_ld_status_addr;
  518. return read_value;
  519. }